
Enhancing the Query Performance of NoSQL
Datastores using Caching Framework

Ruchi Nanda#1, Swati V. Chande*2, K.S. Sharma#3
#1,# 3 Department of CS & IT, The IIS University, Jaipur, India

*2Department of CS, International School of Informatics & Management, Jaipur, India

Abstract—The advent of cloud computing technology has
facilitated storage of the huge amount of data on the servers.
The multi-tenancy feature of cloud-based systems put
additional load on database servers and the retrieval of data
becomes a major issue. There is need to improve the
techniques of data retrieval from cloud databases, so that the
query processing time can be further reduced. Caching is one
of the prominent techniques to improve the query processing
time of SQL based systems. In this paper, a framework based
on caching mechanism is proposed, that aims to reduce the
query processing time of NoSQL datastore queries. It caches
frequently issued queries and results on the database tier of
the server. For cache replacement, a simple least recently
used policy is implemented. Experiments conducted on HBase
show that in order to reduce the query processing time of the
NoSQL datastores queries, caching is a viable alternative.

Keywords— Caching, Cloud NoSQL datastores, Query
Performance, Query Processing

I. INTRODUCTION

With the emergence of cloud computing, in recent years,
large scale database management systems have been come
into sight such as Google’s Bigtable [1], Yahoo’s PNUTS
[2] or Amazon’s Dynamo [3]. The performance of these
databases is the major area under discussion. The vast
amount of data needs to be retrieved in less time.

In cloud environment multiple tenants simultaneously
make request to the database, which causes heavy load on
the database servers. Hence, the query processing time of
the queries increases. Caching is one of the solutions that
can improve the performance of databases and maintains
the time. Queries and their results can be cached for future
retrieval of results for similar or partially-similar queries. It
is useful to store the frequently accessed queries and the
queries whose re-evaluation in query processing are time-
consuming [4].

The proposed technique caches the frequently fired
queries and results for fast retrieval in future. The cache-
replacement policy, LRU is executed in case the cache is
completely occupied and cannot handle more queries. The
main contribution of this paper is in explaining the
proposed caching framework for fast retrieval of data from
cloud-based systems. The experimental evaluation shows
the overall performance improvement of database using this
framework.

The remainder of the paper is organized as:
The section II briefs the related work done by the

researchers in developing caching algorithms. The section
III briefs about the important concepts of caching. Section
IV explains the working of the proposed framework and the
various assumptions taken. The section V explains the
experimental setup along with the datasets and the query
sets used. The parameters used for evaluation, experiment
and the results obtained are also discussed. Finally the
section VI explains the conclusions drawn from the work.

II. RELATED WORK

Caching is one of the techniques that has been broadly
studied in the area of mobile applications, operating
systems, peer-to-peer systems and content delivery
networks for reducing the load on the servers as well as the
response time of the queries ([5]-[9]).

In cloud environment, the authors believed that data
cache should become a cloud service and shared by
multiple tenants. In [8] a simple multi-tenant data cache
scheme named BLAZE was designed based on the CLOCK
replacement algorithm that exploits utility-based cache
partitioning between tenants. A cache system for frequently
updated data in the cloud (CSFUD) was proposed in [9]. It
caches the data by key-value pairs. Their work focused on
the index and cache maintenance problem and considered
response time of the system. A popularity-based small
front-end cache mechanism which caches the most popular
items without querying the back-end nodes was presented
in [10]. It facilitates even distribution of the load across the
back-end nodes. They considered that the node selection is
based on the random data partitioning across all cluster
nodes. This selection is entirely transparent to the user.
They do not consider the systems like BigTable and HBase
and the query processing time factor was not considered. In
[11] the concepts of database caching were applied to the
SQL based systems and discussed that the in-memory
mediums provide quicker access time.

The authors worked on any of the three caching
mechanisms: static-data caching [15], database-caching [11]
or query caching [7]. These studies had made vast
contributions in maintaining the cache. The authors vary the
parameters based on the environment and application type.
These parameters include, cache size, query set size,
database size, type of queries system can handle. Generally

Ruchi Nanda et al, / (IJCSIT) International Journal of Computer Science and Information Technologies, Vol. 7 (5) , 2016,2332-2336

www.ijcsit.com 2332

the caching techniques are applied to structured databases
[11] or applied to cloud but as a cloud service technique [8].
The techniques used [9] were applied to update data queries
on document-oriented NoSQL databases, and relational
databases like Oracle and DB2. The related work reveals
that the query parameters like, cache size, types of queries,
cache replacement policies can be further improved to
increase the data retrieval performance, by taking into
consideration NoSQL datastores.

III. CACHING

Caching refers to the storage of processed data in the
cache memory for fast and easy access. The data that can be
cached includes a query, intermediate results, final results
or part of the database. The purpose of caching is, to avoid
repeated processing of the same query and to get the
previously processed results. It can be done at client-tier,
application-tier and database-tier. The caching of static data
is done at client-tier. The database tier can cache both the
static and dynamic data.

It is useful to store frequently accessed queries and the
queries whose evaluation in query processing time takes
much time. For example, the join operation is considered to
be time-consuming in SQL based-systems. The re-
evaluation of those queries needs to be done again and
again, in case, similar queries approach the database. The
queries which involve join operator can be cached for future
retrieval so that the query processing time is reduced.

 The cache efficacy is calculated in terms of cache hits
and misses. Cache hit occurs when the query is found in
cache and cache miss occurs if the query is not present in
the cache. However, the data needs to be updated in the
cache if the source data in the database gets changed. The
outdated data can lead to inconsistent results.

The data that has been recently used by the application
are likely to be used again. Hence the location of the data
needs to be changed such that it can be accessed easily and
reflects the most recently used data item. It is differentiated
from the data which has not been used for long and can be
evicted in case of any requirement.

When the cache exceeds its maximum size, and in case,
cache-miss query approaches, the query which has not been
used for long is replaced by a new query and result. The
page replacement algorithm is implemented which decides
which query and its results has to be evicted.

The page replacement algorithms help for better
operation of cache. The Least Recently Used (LRU) policy
is used generally, as it is very simple. It keeps the query in
the cache according to the time it has been accessed, so that
the queries that have not been used for long are considered
for eviction from the cache. The new queries, in this case,
can be simply appended in the cache.

IV. PROPOSED FRAMEWORK

The purpose of the framework is, to, improve the query
processing time of the cloud queries by caching the queries
and their results on the database tier of the server. The
caching is done so that, in future, if the same query occurs,
then it will not be again processed by the query processor
and can be directly accessed by the cache.

All the clients hence, share the same cache. If the cache
becomes full, the least recently used queries and their
results are evicted from the cache.

Clients directly access this framework for their query and
results. In case cache-hit occurs, the result is retrieved from
the cache. The cache maintains this frequently accessed
data for easy access. In case of cache-miss, the query results
are obtained from the database, and the results are then
appended in the cache. If the cache is full, the framework
evicts the least recently used query and its results, so that
new query and its results can be cached.

Fig. 1 shows the flowchart describing the working of the
framework. In flowchart, Q represents query and R
represents Result.

Fig. 1 Flowchart of the Proposed Framework

 This framework helps to decrease the number of
interactions directly with the cloud database. The working
of the framework is given below:

The server receives the queries from the client. This
framework search the query in the cache, if the query is
cache-hit, then the result is retrieved from the cache and
submitted to the user. The query and result pointer changes
to the rear of the cache. This is done, so that, it becomes the
most recently used query.

If the query is cache-miss query, then the result is
retrieved from the database and submitted to the client. The
query and result are appended in the cache. Before
appending, framework checks the current size of the cache.
If the current cache size is smaller than the maximum
allocated cache-size, the query and result is directly
appended. But if the cache attains its maximum size, then

Ruchi Nanda et al, / (IJCSIT) International Journal of Computer Science and Information Technologies, Vol. 7 (5) , 2016,2332-2336

www.ijcsit.com 2333

least recently used algorithm is executed, that pop-up the
query and result from the front-end of the cache. The new
query and result is appended and the pointer points to the
rear of the cache.
The basic assumptions for the implementation of the
framework are:
1) The cache is of enough speed and never becomes the

performance problem for the system.
2) The cost consideration is assumed to be uniform,

regardless of the type of queries.
3) The static databases are considered, as we will confine

our concentration to reduce the query processing time
of the queries and hence, ignore the updates.

4) The scan queries in HBase having filter conditions
‘SingleColumnValueFilter’ are considered as these are
considered as the most time-consuming.

5) If the cache attains its maximum size, the least recently
used query and result is evicted, so that the new query
and result can be appended.

6) The cache size is of 15% of the database-size, as it is
being used by previous researchers. The optimal buffer
cache size is between 10% and 15% of the database
size and in some cases up to 20% of the database size
[12].

V. EXPERIMENT & RESULTS

A. Experimental Set-up

The experiment is performed on a customized IaaS cloud
server having processor (Intel(R) Core (™) 2 Duo CPU
P9400 @ 2.40GHz; 4 GB RAM). Apache HBase database
is used to check the performance of our framework. The
framework is implemented in Python 2.7, on a system
having specification shown in Table I. Python applications
connect to HBase using Happybase [13].

HappyBase is a Python library that offers application
developers a rich set of APIs that can be used to interact
with HBase. The experiments were run on a steady
environment, where the system had a GNOME text editor
(gedit) and one virtual machine running. For the
experiments, three runs have been performed in order to
minimize the environmental factors [14].

TABLE I

 SPECIFICATION OF HOST MACHINE

Processor Intel(R) Core(™)2 Duo CPU P9400 @
2.40GHz ; 4 GB RAM

Platform Red Linux Enterprise Edition 6 (RHEL6)

Hypervisor KVM

Language used Python Interpreter 2.7

Database Apache HBase-0.94

API HappyBase-0.3

Interface used for
HBase

Thrift server

B. Datsets and Query Sets Used

In order to evaluate the framework, BlogInfo repository
has been used. It contains the information of the blogs that
includes title, author and the date on which the blog is
created. It also contains a short description of the contents
of the blog.

The query sets are prepared such that they match in
100%, 60% and 20% of exact cache-hit and the remaining
in cache-miss.

C. Evaluation Parameters

To check the performance of the proposed framework,
the query processing time in case of cache-hit and cache-
miss queries are evaluated. The results are compared with
the direct HBase system; hence the overall time taken by
the system is also calculated. The following parameters are
evaluated in case of cache-hit query:

1) The query processing time (QPT) in case of cache-
hit query is the time needed to retrieve the data from
the cache.

2) The system time (ST) is summation of all the phases.
It includes the time taken to process the query i.e
cache retrieval time, time taken to change the pointer
and make the query as the recently used item and
sent the result to the client.

3) The cache background processing time is the time
that cache takes to process the query and keep it as
the recently used item. It works as a background
process.

4) Time taken to send is the time to build the result and
sent to the client. It does not include any network
time.

The following parameters are evaluated in case of cache-
miss query:

1) The query processing time in case of cache-miss
query is the time needed to retrieve the data from the
database.

2) The system time is summation of all the phases. It
includes the time taken to process the query i.e
database retrieval time, time taken to insert query
and result in the cache and time taken to build and
sent the result to the client.

3) The database retrieval time is the time taken to get
the result from the database.

4) The cache background insertion time is the time
taken to append the cache-miss query and its result in
the cache. It works as a background process.

D. Experiments

An experiment is conducted to check the impact of
varying percentage of cache-hit queries on the query
processing time. The purpose of this is, to check whether
caching of queries and result, results in the reduction of
query processing time in NoSQL based datastores.

The cache is warmed by chosen 5 queries. The
experiment is conducted using small sets of queries of
different percentage of exact cache-hit. The percentages
taken are 100%, 60% and 20%. One query set is prepared
for 100% cache-hit queries, since the cache is warmed by 5

Ruchi Nanda et al, / (IJCSIT) International Journal of Computer Science and Information Technologies, Vol. 7 (5) , 2016,2332-2336

www.ijcsit.com 2334

queries. 3 query sets are prepared for 60% and 20% cache-
hit percentage, so that the experiment is run 3 times for
each cache-hit percentage and the possibilities of any
variation caused by environmental factors are neglected.
Each query set contains 5 queries. In all, 7 query sets have
been prepared and 35 queries are executed by the
framework. In each run of the experiment, the processing
time of each query and the time taken by the system to
process the query are calculated and the averages are
calculated. Table II shows the average query processing and
system times for different percentages of cache-hit queries.
The same query sets are run in the system having direct
HBase, for the comparison purpose. Table also depicts the
performance improvement of cache in percentage.

TABLE III

AVERAGE QUERY PROCESSING AND SYSTEM TIME IN EACH RUN

Run-I
Cache-hit % 100% 60% 20%
QPT (sec) 0.0000 0.0116 0.0192
ST: Cache (sec) 0.0005 0.0120 0.0197
ST: HBase (sec) 0.0558 0.0434 0.0356

Run-II
Cache-hit % 100% 60% 20%
QPT (sec) 0.0000 0.0134 0.0187
ST: Cache (sec) 0.0004 0.0136 0.0190
ST: HBase (sec) 0.0558 0.0418 0.0395

Run-III
Cache-hit % 100% 60% 20%
QPT (sec) 0.0000 0.0122 0.0197
ST: Cache (sec) 0.0005 0.0127 0.0199
ST: HBase (sec) 0.0558 0.0434 0.0388

Average of 3 Runs
Cache-hit % 100% 60% 20%
QPT (sec) 0.0000 0.0124 0.0193
ST: Cache (sec) 0.0005 0.0128 0.0195
ST: HBase (sec) 0.0558 0.0426 0.0363
% improvement
(using cache) -99.10 -69.95 -46.24

Figure 2 shows the graphical representation of the query

processing time in each run of the experiment. The x-axis
shows the cache-hit percentage and y-axis shows the
average query processing time of the queries.

Fig. 2 Query Processing Time of Exact Cache-hit Percent Queries in Run I,

Run II & Run III

E. Results & Discussion

It is observed that the average query processing and
system time is almost negligible in case of 100% cache-hit
queries. It increases with the decrease in the percentage of
exact cache-hit queries. The average ST of the queries
executed directly on HBase decreases from 100% to 20%.
This reduction in the system time is due to the partial
caching in database system and operating system [11].

It is seen that the performance improvement in the
system using cache framework over the system having
HBase at 100%, 60% and 20% are 99.10%, 69.95% and
46.24% respectively.

These observations in average query processing time are

visible in Fig 3. The x-axis shows the cache-hit percentage
and the y-axis shows the average query processing time in
seconds.

Fig. 3 Impact of set of exact cache-hit percentage queries on the Average
Query Processing Time

The observations in the system time are shown
graphically in Figure 4. The x-axis represents the cache-hit
percentage and the y-axis shows the average system time in
seconds.

Fig. 4 Impact of set of exact cache-hit percentage queries on the Average

System Time

Ruchi Nanda et al, / (IJCSIT) International Journal of Computer Science and Information Technologies, Vol. 7 (5) , 2016,2332-2336

www.ijcsit.com 2335

VI. CONCLUSIONS AND FUTURE WORK

The framework proposed in the study is based on
caching mechanism. In cloud systems, it caches the
frequently accessed queries and results on the database tier.
The purpose of the framework is to reduce the query
processing time of multiple queries on cloud database. The
applications that access static databases or the databases in
which the updations are rarely done are the best candidates
for using this framework. It has been evaluated
systematically and the experiment proves that caching is a
viable alternative for NoSQL datastores. The query
processing and system time is drastically reduced for the
exact cache-hit queries. It presents an optimistic direction
for future research. The work can be extended by working
on the parameters that affect the caching mechanism. The
parameters that need consideration are:

 Cache-size that can be calculated by
experimentation

 Increase in the database-size and query set size
 Type of queries to be processed
 Type of page replacement algorithm.

REFERENCES
[1] F. Chang, J. Dean, S. Ghemawat, W. C. Hsieh, D. A. Wallach, M.

Burrows, T. Chandra, A. Fikes, and R. E. Gruber, “Bigtable: A
distributed storage system for structured data,” ACM Transactions on
Computer Systems (TOCS), vol. 26(2), p.4, 2008.

[2] B. F. Cooper, R. Ramakrishnan, U. Srivastava, A. Silberstein, P.
Bohannon, H. A. Jacobsen, N. Puz, D. Weaver, and R. Yerneni,
“PNUTS: Yahoo!'s hosted data serving platform,” in Proc. VLDB
Endowment, 2008, vol. 1(2), pp.1277-1288.

[3] G. DeCandia, D. Hastorun, M. Jampani, G. Kakulapati, A.
Lakshman, A. Pilchin, S. Sivasubramanian, P. Vosshall, and W.
Vogels, “Dynamo: amazon's highly available key-value store” ACM
SIGOPS Operating Systems Review, vol. 41(6), pp. 205-220, 2007.

[4] D. Wessels, Web caching, O'Reilly Media, Inc. 2001.
[5] K. Raichura, N. Padhariya, and K. Atkotiya, “Cache-Based Query

Optimization In Mobile Ad-Hoc Networks,” International Journal of
Technology Enhancements and Emerging Engineering Research, vol.
3(2), pp.226-232, 2014.

[6] O. D. Sahin, A. Gupta, D. Agrawal, and A. El Abbadi, “A peer-to-
peer framework for caching range queries,” in Proc. Data
Engineering,2004. IEEE, pp. 165-176.

[7] H. Ding, A. Yalamanchi, R. Kothuri, S. Ravada, and P.
Scheuermann, “QACHE: query caching in location-based
services,” Progress in Spatial Data Handling. Berlin,
Heidelberg: Springer, 2006, pp. 99-116.

[8] G. Chockler, G., Laden, and Y. Vigfusson, “Data caching as a cloud
service,” in Proc. of the 4th International Workshop on Large Scale
Distributed Systems and Middleware ACM, 2010, pp. 18-21.

[9] F. Dong, K. Ma, and B. Yang, “Cache system for frequently updated
data in the cloud,” WSEAS Transactions on Computers, vol. 14, pp.
163-170, 2015.

[10] B. Fan, H. Lim, D. G Andersen, and M. Kaminsky, “Small cache, big
effect: Provable load balancing for randomly partitioned cluster
services,” in Proc. of the 2nd ACM Symposium on Cloud Computing,
2011, p. 23.

[11] B. J. Sandmann, “Implementation of a Segmented, Transactional
Database Caching System,” Journal of Undergraduate Research at
Minnesota State University, Mankato, vol. 6(1), pp. 21, 2014.

[12] A. N. Packer, Configuring and tuning databases on the Solaris
platform, Prentice Hall PTR, 2001.

[13] Userguide HappyBase [Online]. Available:
http://happybase.readthedocs.io/en/latest/user.html

[14] M. Perrin, “Time-, Energy-, and Monetary Cost-Aware Cache
Design for a Mobile-Cloud Database System”, Doctoral dissertation,
University of Okalahoma, 2015.

[15] Y. Bu, B. Howe, M. Balazinska, and M.D. Ernst, “The HaLoop
approach to large-scale iterative data analysis,” The VLDB Journal—
The International Journal on Very Large Data Bases, vol. 21(2),
pp.169-190, 2012.

Ruchi Nanda et al, / (IJCSIT) International Journal of Computer Science and Information Technologies, Vol. 7 (5) , 2016,2332-2336

www.ijcsit.com 2336

